
www.shapeblue.com

We Are the CloudStack Company!

Migrating to Apache CloudStack
from Rovius/CloudPlatform

HOW-TO GUIDE

www.shapeblue.com

Engage with ShapeBlue

COMPANY HEADQUARTERS

3 London Bridge Street
3rd Floor, News Building
London SE1 9SG

United Kingdom
Phone: +44 20 3603 0540
Email: info@shapeblue.com

SHAPEBLUE USA

800 West El Camino Real
Suite 180, Mountain View
California 94040

USA
Phone: +44 20 3603 0540
Email: nasales@shapeblue.com

SHAPEBLUE CAPE TOWN

Dock Road Junction
Cape Town, 8001

South Africa
Phone: +27 (0)21 527 0091
Email: zasales@shapeblue.com

SHAPEBLUE INDIA

22nd floor, Unit No. N 2201
WTC Bangalore
Brigade Gateway
Bangalore – 560055

India
Phone: +91 (80) 6793 5867
Email: bangalore-office@shapeblue.com

www.shapeblue.com

 1

Table of Contents

GETTING READY FOR THE UPGRADE PROCESS .. 3
TOOLBOX REQUIRED .. 3
DIFFERENCES BETWEEN ACP AND ACS ... 3
DBFORGE SCHEMA COMPARE AND DATA COMPARE TOOLS ... 4

SCHEMA compare tool .. 4
Data Compare tool ... 6
Risks with DB changes ... 8

HIGH-LEVEL UPGRADE STEPS .. 8
PRODUCTION DB UPGRADE ... 9
PRE-UPGRADE DATABASE CLEANUP .. 10
POST-UPGRADE DATABASE CLEANUP .. 10
GUEST_OS TABLE SPECIFICS ... 11
CONCLUSION ... 14

 2

In recent years, we’ve seen many companies upgrading from Accelerite Cloud Pla=orm (Rovius) and
its predecessor Citrix CloudPal=orm (which were both single-vendor, commercial products based on
Apache CloudStack) to Apache CloudStack itself. Some of the drivers behind their decision are the
product stability that a large, global open-source community brings; to avoid vendor lock-in; and the
flexibility of a real open-source soluJon. In addiJon, they strive to achieve cost efficiency and improved
security and compliance. Last but not least, companies oMen have specific requirements for their cloud
infrastructure and services, which is much easier to accomplish with an open-source pla=orm.

Apache CloudStack

Apache CloudStack is widely adopted globally, is being deployed in more and more producJon
environments, and is operated by many of the world's largest companies. Unlike many other open-
source projects, users of CloudStack overwhelmingly run the naJve open-source releases of the
soMware, not vendor distribuJons.

Supportability

It's a testament to the stability of Apache CloudStack that many organisaJons run it in producJon
without external assistance (although problems with the pla=orm can be discussed with the
CloudStack community). However, some organisaJons prefer to partner with us at ShapeBlue - we
provide a 24/7 SLA based support service to many enterprise CloudStack users.

MigraJng

This document provides high-level steps to upgrade from an existing, production deployment of
CloudPlatform to Apache CloudStack. ShapeBlue has extensive experience in these migrations and has
migrated many organizations to Apache CloudStack without downtime. Following the steps outlined
below will significantly de-risk these upgrades.

This article only covers the extra steps required when upgrading for ClouPlatform to Apache
CloudStack. It does not cover the “standard” steps taken during a CloudStack > CloudStack upgrade –
these are well documented elsewhere.

This document is based on a talk given on the same subject at the CloudStack Collaboration
Conference 2022.

Even though it might be obvious, let’s define some acronyms used in this ar8cle:

• ACP = Accelerite CloudPla=orm (Rovius)
• ACS = Apache CloudStack
• DB = database

 3

Ge#ng ready for the upgrade process
As ACP is based on the ACS code base, the process of “migraJng” from one to the other is effecJvely
an upgrade process. However, unlike upgrades between ACS versions, the upgrade process will not
have gone through CloudStack version release tesJng (which happens with every release of Apache
CloudStack). Although this is a proven process, successfully completed many Jmes, careful
consideraJon and planning must be done to ensure success.

Before we begin, you need to have in mind that there are many variables in play. For example:

• Each environment is different
• Different source CloudPla=orm version
• Different target CloudStack version
• Different database data, different database schema, patches, etc.

o e.g. ACP 4.11 is based on ACS 4.10, but with some DB changes
• Different auxiliary components

o Cloud Portal Business Manager (addiJonal soMware available with CloudPla=orm)
o LDAP / NATIVE authenJcaJon

To over-simplify, the key steps to ensure a successful migraJon are:

• Ensure a successful database upgrade from ACP to ACS
• AMer the DB upgrade, ensure minimal deviaJon from a clean / vanilla CloudStack DB
• Proper tesJng (funcJonal, UAT)

Toolbox required
To successfully prepare for the migraJon process, you also need some soMware tools:

• A virtual machine with a target CloudStack management server installed (for sandboxed DB
upgrade)

• dbForge soMware:
o ‘Data compare’ & ‘Schema compare’ tools (www.devart.com)
o to connect to the upgraded DB and “vanilla” ACS DB
o Proper test environment for funcJonal/UAT tesJng

• OpJonal: ACP binaries
o to spin a new test environments, upgrade to the target ACS version, and run Marvin /

smoke tests.

Differences between ACP and ACS
While ACP and ACS are essenJally the same product (ie. both based on the ACS codebase) there are
some differences between them that must be allowed for:

• DB version mismatch between the “same” versions
o ACP 4.11 is based on ACS 4.10
o ACP 4.7 is based on ACS 4.6 with some tables indexes from ACS 4.8, 4.9 and even

4.10

 4

• “guest_os” and “guest_os_hypervisor” records deviate significantly
• Some specific features in ACP that are not in the upstream ACS (the same applies the other

way around)
• Different implementaJons of the same things in ACP and ACS. For example:

o a different number of passes used in the user’s password encoding (PBKDF2)
o user’s passwords not working aMer upgrade to ACS

A careful analysis of these feature differenJals is required. However, it is worth noJng that with all of
the successful migraJons that we have been involved with, none of these has ever been a blocker.

dbForge Schema Compare and Data Compare tools
Before we step into the actual migraJon/upgrade procedure, let’s first explain the dbForge tools
needed. The tools are available at hrps://www.devart.com/dbForge/mysql/compare-bundle/

SCHEMA compare tool
The schema compare tool is used to compare table structures (field lengths, indexes, keys, column
names, etc.) between different tables (databases). The procedure that we will follow is as follows:

• Take the clean installaJon ACS schema (DB) as the source
• Take the ACP schema (DB) as the des8na8on
• The source data is assumed to be correct, and the scripts generated by the tool will update

the desJnaJon DB to match the source DB
o Thus, it’s important to not swap ACP and ACS DBs

• Make manual changes as needed
• Export the “synchronizaJon” script to a file

Why are schema changes are important? CloudStack code (Java code) expects a certain DB schema –
it’s as simple as that – so this process ensures that.

 5

Figure 1: An image showing sevng up the Source and the Target DB

 6

Figure 2: An image showing schema differences of a specific table from a vanilla and the upgraded

DB

Figure 3: An image showing the process of exporJng the resulJng SQL script.

Data Compare tool
As its name implies, the Data compare tool is used to compare data in different tables.

In our case, we will want to compare data in a few “staJc” tables (between ACP and ACS DBs) that
are of importance, while ignoring all the other tables. By “staJc” tables we refer to those tables that

 7

hold configuraJon data and are considered “staJc” from a day-to-day operaJonal point of view.
These are:

• configuraJon
• roles
• role_permission
• hypervisor_capabiliJes
• guest_os_hypervisor
• guest_os

The procedure is as follows:

• Take the clean installaJon ACS DB as the source
• Take the ACP DB as the des8na8on
• The source data is assumed to be correct, and the scripts generated by the tool will update

the desJnaJon DB to match the source DB
• Thus, it’s important to not swap ACP and ACS DBs

• Make manual changes as needed
• Export the “synchronizaJon” script to a file

Why are data changes important? CloudStack code (Java code) expects certain data in certain tables.

Using Data compare can be challenging as we need to configure the right comparison “key” for each
table (good judgement is criJcal here). We also need to choose columns / fields which are compared
or ignored (not compared) and we have to approach this decision table by table. See an example
below:

 8

In this specific example, for table “hypervisor_capabiliJes”, we know that we need to compose a
comparison key out of columns “hypervisor_type” and “hypervisor_version” which uniquely
describes each hypervisor (this table describes each unique hypervisor capabiliJes). Also, we do not
want to compare the “ID” and “UUID” fields values, because we know those are unique per each
CloudStack installaJon and thus are not relevant as a comparison parameter (there would be so
many false differences).

Risks with DB changes
Special care needs to be paid to the resulJng synchronizaJon SQL script, and every query generated
by these tools should be reviewed by an experienced administrator. There are several risks:

• Shortening column length
• Is there data that could be truncated?

• Lowering values inside some columns
• e.g. number of supported disks in the “hypervisor_capabiliJes” table

• Wrong “keys” used in dbForge tools
• e.g. for “hypervisor_capabiliJes” the default comparison key is based on the “ID” field,

and this is wrong – it needs to be set to “hypervisor_type” + “hypervisor_version”.
• False differences due to comparing data of unneeded columns

• “ID” and “UUID” are mostly irrelevant (unique for every installaJon) and we should
probably skip comparing these (noJce that we skip them in the example above, in
the “hypervisor_capabiliJes” table)

• The same is true for e.g. “created”, “removed”, “updated” columns, etc.

High-level upgrade steps
We can split the whole migraJon / upgrade process into a few secJons.

• Upgrade (a copy of) the producJon DB
o Usually requires pre-upgrade database troubleshooJng and cleanup
o This is done in a sandboxed environment (e.g. inside a VM, network-isolated from

producJon hosts / storage)
o Ensure easy rollback in case of failed DB upgrade (e.g. use VM snapshots)
o The idea is to make many test upgrades (thus we say “copy of the producJon DB”)

and probably many failures, unJl we have done a proper clean of the original DB
prior to the upgrade – and unJl we have a “recipe” to be used later in real
producJon DB

• Clean up databases schema and data aMer the upgrade
o Required for various reasons
o Iterate if required

• Test
o FuncJonal tesJng is possible only in the test environment

 9

ProducEon DB upgrade
We can use the procedure below to build a new CloudStack management server, where we will test /
execute the upgrade of the copy of the producJon DB. Before proceeding, pay arenJon to the
chosen target versions of ACS (old hypervisors in your environment?), MySQL version (5.7 / 8.0?),
compaJbility between ACS and MySQL version, chosen OS version, etc.

• Build ACS management server (target OS + target ACS version)
o Install packages, but don’t configure / run the management service

• Install / configure the target MySQL version on the same server
o Create MySQL user for cloud / cloud_usage database
o “cloud” DB user / pass should be obtained from the db.properJes, and used as such

when creaJng a MySQL user and later with the cloudstack-setup-databases
command

• Copy from producJon the “key" and "db.properJes“ files, import databases
o Use the “key” to decrypt the value of the “db.cloud.encrypt.secret” from

db.properJes
o Use the “key” to decrypt the value of the “db.cloud.password” from db.properJes
o Run the “cloudstack-setup-databases” with the obtained keys / passwords

• Simulate system VM templates being registered by InjecJng records into “vm_template” so
that upgrade doesn’t fail

• Perform pre-upgrade database cleanup (once you have the SQL scripts)
• Start cloudstack management server, tail -f the logs, and confirm DB upgrade is successful

It’s worth menJoning that the first database upgrade is expected to fail this stage – this is expected,
and gives us valuable informaJon. Once we have developed appropriate pre-upgrade SQL scripts
that will lower the version of ACP in the “version” table, prepare guest_os table, remove any schema
issues (i.e. keys / indexes) etc. we would expect success. There is more on the creaJon of said scripts
later in this doc.

Given the high-level steps below, here are also some of the Jps and details needed for the process
above

• Ensure frequent VM snapshots
o Between various VM build steps
o To be able to quickly roll back if database upgrades fail.

• DecrypJng values of “db.cloud.encrypt.secret” and “db.cloud.password”
o java -classpath /usr/share/cloudstack-common/lib/jasypt-1.9.2.jar

org.jasypt.in=.cli.JasyptPBEStringDecrypJonCLI decrypt.sh input=<ENCRYPTED-
VALUE> password=<management-key-value> verbose=true

• Management server setup
o cloudstack-setup-databases cloud:<cloud db password>@<cloud db host> -i

<management server IP address> -m <mgmt-key> -k <database-encrypJon-key>
• Simulate system VM templates are in place so that the upgrade doesn’t fail

o TLDR/W - please see the video with the demo: hrps://youtu.be/dJEf3y-
embs?t=2396

 10

PRE-UPGRADE database cleanup
Before we can upgrade the ACP database to a new version of ACS, you should be aware that this
process will usually require a few iiteraJons. This is due to ACP not following the same versioning
scheme as ACS, and also ACP DBs are modified, which causes upgrades to fail (i.e. some indexes are
added, and the upgrade itself also tries to create the same indexes, which is impossible to do as they
already exist – so we need to first remove those indexes in the source ACP DB and only then arempt
to do the DB upgrade).

Some other things to be aware of:

• Pre-upgrade cleanup depends on the ACP version, custom patches, and addiJons of guest OS
records

• Usually boils down to:
o DeleJng extra records from the “guest_os” table
o Lowering the version by deleJng a few rows in the “version” table
o Adding / removing keys / indexes / other schema changes

§ ACP 4.7 has a lot of keys / indexes improvements from ACS 4.8, 4.9 and even
4.10, but is based on ACS 4.6 version

§ This means we need to undo all the schema changes “aMer ACS 4.6”,
so that the ACS SQL upgrade scripts can run successfully (from 4.6 and
onwards)

• “guest_os” table (this one is probably the biggest task):
o Records / values started driMing significantly in recent ACP / ACS versions
o We need to remove records with IDs that the ACS upgrade is trying to inject –

otherwise,
the DB upgrade will fail (as a record with the same ID already exists)

o AMer the upgrade, we will need to “reset” the table content to the vanilla one
o This later requires updaJng references in various other tables

• “version” table
o We need to work out which ACS version is the current ACP version based on
o Done by understanding different failures of the DB upgrade
o Done by checking the ACS SQL upgrade files
o e.g. ACP 4.7 is based on ACS 4.6, ACP 4.11 is based on ACS 4.10

• Various “extra” keys/indexes/columns (“backported” from newer ACS versions)
o …need to be removed, so ACS upgrade can add those

POST-UPGRADE database cleanup
We have already shared some general guidance about using dbForge Schema compare and Data
compare tools. This includes analyzing both the schema changes (relaJvely easy) and data changes (a
lirle more complicated). In both cases, you will end up with a set of SQL scripts that later need to be
executed against the upgraded DB.

Some notes on why those changes are needed:

• To ensure that ACS will not throw excepJons and various funcJonaliJes will not be broken.

 11

• To ensure future upgrades would not fail due to expecJng some “clean” ACS data / schema,
while an older ACP data / schema is there.

• Role permissions records are completely missing in ACP DB.
• Hypervisor capabiliJes differ between ACP and ACS DBs.
• PotenJally problemaJc “configuraJon” table (global sevngs table) in ACP DB.
• Private gateway fix (“guest” instead “PrivateGw” in “network” and ”network_offering”

tables)
• CreaJng index “unique_index” on table “ssh_keypairs” (part of schema update) may fail due

to duplicate records (if any) – so you’ll need to manually remove the older one of each
duplicate key.

GUEST_OS table specifics
Since the data (list of OSes) in the “guest_os” table has started to driM away (as of ID 254 and
onwards, see the image below) in the ACP database from ACS, it is recommended to completely
replace the content of “guest_os” table with the content of the same table from the clean ACS
installaJon of a target version, to avoid any issues in the future with duplicate or otherwise broken
guest OS-es.

Later, you would be changing references in the “vm_instance”, “vm_template”, and
“guest_os_hypervisor” tables, to point to the new IDs of the same kind of OS that those references
were poinJng originally.

To give you an idea of the remapping process (or more precisely on idenJfying which guest OS IDs
need to be replaced with new guest OS IDS) – please see the image below (this is an example
comparing ACP version 4.11.0.7 and a clean ACS version 4.13.1.0 from a past customer project):

As an example, you can see that the OS “Windows Server 2019 (64-bit)” has ID 284 in the ACP
database, while the same OS has ID 276 in the ACS database.

 12

For updaJng a reference in “vm_instance”, “vm_template” and “guest_os_hypervisor” you would
need to manually create a set of SQL queries to do the proper replacement of the references with
new IDs.

Below, you can find a “bonus” to this arJcle – a detailed set of SQL scripts that will do the needed ID
reference changes (per the image above) - there are 29 different guest OS-es to handle, but for
brevity, we show just the first 5 OS-es:

Since we wiped the upgraded ACP "guest_os table" and replaced its
content with the content from the clean ACS 4.13 guest_os table, now let's
remap any references in "vm_template", "vm_instance" and
"guest_os_hypervisor" tables, to point to the new IDs from the guest_os
table, for the same/identical OS type they were pointing to previously.

"guest_os_details" table is also wiped in the ACP upgraded DB and
replaced with the content of the same table from the clean 4.13
installation, so no references to update in this table, since they already
are from the clean CloudStack 4.13 install database.

create temp tables
CREATE TABLE IF NOT EXISTS TEMP_VM_IDs LIKE vm_instance;
CREATE TABLE IF NOT EXISTS TEMP_TEMPLATE_IDs LIKE vm_template;
CREATE TABLE IF NOT EXISTS TEMP_GUESTOSHYPERVISOR_IDs LIKE
guest_os_hypervisor;

 13

populate temp table as the input for later update statements
this is required since simple update XXX where YYY will not work due to
cyclic overwrite / loop

vm_instances
INSERT INTO TEMP_VM_IDs
SELECT * FROM vm_instance WHERE guest_os_id IN (254,255,256,257,258);

vm_template
INSERT INTO TEMP_TEMPLATE_IDs
SELECT * FROM vm_template WHERE guest_os_id IN (254,255,256,257,258);

guest_os_hypervisor
INSERT INTO TEMP_GUESTOSHYPERVISOR_IDs
SELECT * FROM guest_os_hypervisor WHERE guest_os_id IN
(254,255,256,257,258);

SET FOREIGN_KEY_CHECKS=0;

UPDATE vm_instance SET guest_os_id=270 WHERE id IN (SELECT id from
TEMP_VM_IDs where guest_os_id=254);
UPDATE vm_instance SET guest_os_id=258 WHERE id IN (SELECT id from
TEMP_VM_IDs where guest_os_id=255);
UPDATE vm_instance SET guest_os_id=257 WHERE id IN (SELECT id from
TEMP_VM_IDs where guest_os_id=256);
UPDATE vm_instance SET guest_os_id=276 WHERE id IN (SELECT id from
TEMP_VM_IDs where guest_os_id=257);
UPDATE vm_instance SET guest_os_id=254 WHERE id IN (SELECT id from
TEMP_VM_IDs where guest_os_id=258);

UPDATE vm_template SET guest_os_id=270 WHERE id IN (SELECT id from
TEMP_TEMPLATE_IDs where guest_os_id=254);
UPDATE vm_template SET guest_os_id=258 WHERE id IN (SELECT id from
TEMP_TEMPLATE_IDs where guest_os_id=255);
UPDATE vm_template SET guest_os_id=257 WHERE id IN (SELECT id from
TEMP_TEMPLATE_IDs where guest_os_id=256);
UPDATE vm_template SET guest_os_id=276 WHERE id IN (SELECT id from
TEMP_TEMPLATE_IDs where guest_os_id=257);
UPDATE vm_template SET guest_os_id=254 WHERE id IN (SELECT id from
TEMP_TEMPLATE_IDs where guest_os_id=258);

UPDATE guest_os_hypervisor SET guest_os_id=270 WHERE id IN (SELECT id from
TEMP_GUESTOSHYPERVISOR_IDs where guest_os_id=254);
UPDATE guest_os_hypervisor SET guest_os_id=258 WHERE id IN (SELECT id from
TEMP_GUESTOSHYPERVISOR_IDs where guest_os_id=255);
UPDATE guest_os_hypervisor SET guest_os_id=257 WHERE id IN (SELECT id from
TEMP_GUESTOSHYPERVISOR_IDs where guest_os_id=256);
UPDATE guest_os_hypervisor SET guest_os_id=276 WHERE id IN (SELECT id from
TEMP_GUESTOSHYPERVISOR_IDs where guest_os_id=257);

 14

UPDATE guest_os_hypervisor SET guest_os_id=254 WHERE id IN (SELECT id from
TEMP_GUESTOSHYPERVISOR_IDs where guest_os_id=258);

DROP TABLE TEMP_VM_IDs;
DROP TABLE TEMP_TEMPLATE_IDs;
DROP TABLE TEMP_GUESTOSHYPERVISOR_IDs;
SET FOREIGN_KEY_CHECKS=1;

Conclusion
Although relaJvely straigh=orward, upgrading from Accelerite CloudPla=orm / Rovius to Apache
CloudStack is not as simple as a standard CloudStack upgrade - care has to be taken to ensure that
the differences are acounted for during the upgrade. However, if these steps are followed carefully,
there is no reason that migraJons cannot be achieved consistently, and with zero downJme. The
benefits of moving from a commercial product that is based overwhelmingly on a major open-source
pla=orm to the actual open-source pla=orm are apparent.

To see more detailed steps and an example of our customer engagement project, please see the
video at hCps://youtu.be/dJEf3y-embs

Engage with ShapeBlue

COMPANY HEADQUARTERS

3 London Bridge Street
3rd Floor, News Building
London SE1 9SG

United Kingdom
Phone: +44 20 3603 0540
Email: info@shapeblue.com

SHAPEBLUE USA

800 West El Camino Real
Suite 180, Mountain View
California 94040

USA
Phone: +44 20 3603 0540
Email: nasales@shapeblue.com

SHAPEBLUE CAPE TOWN

Dock Road Junction
Cape Town, 8001

South Africa
Phone: +27 (0)21 527 0091
Email: zasales@shapeblue.com

SHAPEBLUE INDIA

22nd floor, Unit No. N 2201
WTC Bangalore
Brigade Gateway
Bangalore – 560055

India
Phone: +91 (80) 6793 5867
Email: bangalore-office@shapeblue.com

www.shapeblue.com

